MULTIVARIATE STATISTICS AND HILBERT SPACES

Luigi Beghi

Multivariate Statistics' main purpose is to define and subsequently statistically validate models of mathematical relationships among a finite set of "measurable attributes" (variables) $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$ characterizing a certain domain of investigation.
Within this general frame we take into consideration the "best fitting" problem, where the measurable attributes are subdivided into a subset of "independent or explanatory variables" $\left\{\mathbf{X}_{1}, \ldots, X_{p}\right\}$ and another subset $\left\{\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{q}\right\}$ of "dependent variables"; a mathematical model of functional dependence of the Y 's variables on the X 's is introduced, together with an optimality criterion allowing for the determination of the numerical values of the parameters present in the model on the base of available experimental data. A distinct sample of experimental data will allow for the statistical validation of the model.
Let us now consider the case of "linear least squares best fitting", with a single dependent variable Y and a set $\left\{X_{1}, \ldots, X_{p}\right\}$ of dependent variables.

Given a sample of experimental data $\left\{\left(\mathbf{x}_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right\}, \mathrm{i}=1, \ldots, \mathrm{~N}$ and the mathematical model of linear dependence of Y on the X 's :

$$
\mathbf{Y}=\alpha_{1} \mathbf{X}_{1}+\ldots+\alpha_{p} \mathbf{X}_{\mathrm{p}}+\gamma
$$

(where $\alpha_{1}, \ldots, \alpha_{p}, \gamma$ are the model's parameters), the optimality criterion for the determination of the numerical values of parameters is the minimization of the total sum of squares of residuals

$$
F\left(\alpha_{1}, \ldots, \alpha_{p}, \gamma\right)=\Sigma_{i}\left[y_{i}-y_{i}^{\prime}\right]^{2}
$$

where the $\left\{y_{i}\right\}$ are the estimated values of the dependent variable \mathbf{Y}, obtained according to the relation :

$$
\mathbf{y}_{\mathbf{i}}^{\prime}=\alpha_{1} \mathbf{x}_{\mathrm{i} 1}+\ldots+\alpha_{p} \mathbf{x}_{\mathbf{i} p}+\gamma, \mathbf{I}=1, \ldots, \mathbf{N}
$$

A possible solution of this problem, in the absence of mathematical constraints on the parameters is the "analytical" one, is obtained through the vector differential equation

$$
\operatorname{grad} \mathbf{F}=0,
$$

equivalent to the system of linear differential equations

$$
\partial \mathbf{F} / \partial \alpha_{1}=\mathbf{0}, \ldots, \partial \mathbf{F} / \partial \alpha_{\mathrm{p}}=\mathbf{0}, \partial \mathbf{F} / \partial \gamma=\mathbf{0}
$$

leading to the solution of the system of linear equations :
$\operatorname{var}\left(\mathbf{X}_{1}\right) \alpha_{1}+\operatorname{covar}\left(X_{1}, X_{2}\right) \alpha_{2}+\ldots+\operatorname{covar}\left(X_{1}, X_{p}\right) \alpha_{p}=\operatorname{covar}\left(X_{1}, Y\right)$
$\operatorname{covar}\left(X_{p}, X_{1}\right) \alpha_{1}+\operatorname{covar}\left(X_{p}, X_{2}\right) \alpha_{2}+\ldots+\operatorname{var}\left(X_{p}\right) \alpha_{p}=\operatorname{covar}\left(X_{p}, Y\right)$
together with the relation :

$$
\gamma=\mathbf{E}(\mathbf{Y})-\alpha_{1} \mathbf{E}\left(\mathbf{X}_{1}\right)-\ldots-\alpha_{p} \mathbf{E}\left(\mathbf{X}_{p}\right)
$$

where $\mathrm{E}(\mathrm{Y}), \mathrm{E}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{E}\left(\mathrm{X}_{\mathrm{p}}\right)$ are the expected values (i.e.the arithmetic means) and $\operatorname{var}\left(X_{1}\right), \ldots, \operatorname{var}\left(X_{p}\right), \operatorname{covar}\left(X_{1}, X_{2}\right), \ldots, \operatorname{covar}\left(X_{p}, Y\right)$ are the variances and the covariances of the variables considered above.

An equivalent approach is offered by the introduction of a Hilbert spaces on these variables and the subsequent use of the so-called orthogonality principle, as it will be shown in what follows.

Given a Probability Space and a generic set of random variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ with finite expected values $\mathrm{E}\left(\mathrm{V}_{1}\right), \ldots, \mathrm{E}\left(\mathrm{V}_{\mathrm{k}}\right)$ and a non singular
variance-covariance matrix B (i.e. det $B \neq 0$) :

$$
\operatorname{var}\left(V_{1}\right) \quad \operatorname{covar}\left(V_{1}, V_{2}\right) \ldots \quad \operatorname{covar}\left(V_{1}, V_{k}\right)
$$

$\mathbf{B}=$

$$
\operatorname{covar}\left(V_{k}, V_{1}\right) \operatorname{covar}\left(V_{k}, V_{2}\right) \ldots \operatorname{var}\left(V_{k}\right)
$$

and finally assuming, for the sake of simplicity, $E\left(V_{1}\right)=\ldots=E\left(V_{k}\right)=0$, we define the norms of these r.v.'s :

$$
\left\|\mathbf{V}_{1}\right\|=\operatorname{var}\left(\mathbf{V}_{1}\right)^{1 / 2}, \ldots,\left\|V_{k}\right\|=\operatorname{var}\left(V_{k}\right)^{1 / 2}
$$

and their «scalar products» :

$$
\left.<\mathbf{V}_{r}, \mathbf{V}_{\mathrm{s}}\right\rangle=\operatorname{covar}\left(\mathbf{V}_{\mathrm{r}}, \mathbf{V}_{\mathrm{s}}\right), \mathbf{r}, \mathrm{s}=1, \ldots, \mathrm{k}
$$

in such a way that

$$
\left\|\mathbf{V}_{\mathbf{r}}\right\|=<\mathbf{V}_{\mathbf{r}}, \mathbf{V}_{\mathbf{r}}>^{1 / 2} .
$$

The scalar product that we just defined satisfies the following properties:

1) $\langle x, y\rangle=\langle y, x\rangle$,
2) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
3) $<\lambda x, y>=|\lambda|<x, y>$ (where λ is an arbitrary real number, called scalar)
4) $<x, x>\geq 0,<x, x>=0 \Rightarrow x=0$.

We say that x, y are orthogonal if $\langle\mathrm{x}, \mathrm{y}\rangle=\mathbf{0}$ while their norms are positive.

The set of random variables $\left\{\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}\right\}$ with the scalar product defined above constitutes a "Hilbert Space" of finite dimension k.

Given a sub-set $\left\{X_{1}, \ldots, X_{p}\right\}(p \leq k)$ such that the determinant of their variance-covariance matrix $\neq 0$, we define as linear variety $L\left[X_{1}, \ldots, X_{p}\right]$ the set of all their possible linear combinations

$$
\alpha_{1} \mathbf{X}_{1}+\ldots+\alpha_{p} \mathbf{X}_{p}
$$

where $\alpha_{1, \ldots,} \alpha_{p}$ are arbitrary real numbers.
Considering now a generic random variable. Y of the same Hilbert Space, we define as its orthogonal projection Y^{\prime} on $\mathrm{L}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}\right]$ the random variable Y^{\prime} of $L\left[X_{1}, \ldots, X_{p}\right]$, i.e. $Y^{\prime}=\alpha_{1} X_{1}+\ldots+\alpha_{p} X_{p}$, such that it satisfies the following orthogonality conditions:

$$
<\mathbf{Y}-\mathbf{Y}^{\prime}, \mathbf{X}_{1}>=\mathbf{0}, \ldots, \quad<\mathbf{Y}-\mathbf{Y}^{\prime}, \mathbf{X}_{\mathrm{p}}>=\mathbf{0}
$$

This relations are equivalent to the system of equations:
$\left.<X_{1}, X_{1}>\alpha_{1}+<X_{1}, X_{2}>\alpha_{2}+\ldots+<X_{1}, X_{p}>\alpha_{p}=<X_{1}, Y\right\rangle$
$\left.<X_{p}, X_{1}>\alpha_{1}+<X_{p}, X_{2}>\alpha_{2}+\ldots+<X_{p}, X_{p}>\alpha_{p}=<X_{p}, Y\right\rangle$

Orthogonality principle : the orthogonal projection Y^{\prime} on $L\left[X_{1}, \ldots, X_{p}\right]$ exists and is unique and satisfies the minimality condition

$$
\left\|Y-\left(\alpha^{*}{ }_{1} X_{1}+\ldots+\alpha_{p}^{*} X_{p}\right)\right\|=\min
$$

The values of $\left(\alpha^{*}{ }_{1}, \ldots, \alpha^{*}{ }_{p}\right)$ satisfy the system of linear equations : written above.

This system of linear equation is the same written before in terms of variances and covariances!

TO BE NOTICED : we can easily extend the concept of Hilbert space to random variables with expected values $\neq 0$: it will be sufficient in this case to associate to them the r. v. $X^{\prime}{ }_{1}=X_{1}-\mathbf{E}\left(\mathbf{X}_{1}\right), \ldots, X_{p}{ }_{p}=X_{p}-\mathbf{E}\left(X_{p}\right), Y^{\prime}=Y-E(Y)$ and thereafter apply for these new random variables the procedure illustrated before !

