INTRODUCTION TO PETROLEUM AND GEOTHERMAL EXPLORATION

A detailed overview on the main disciplines involved in the oil&gas and geothermal exploration. A training on multidisciplinary communication for professionals of the oil and geothermal industry.

R. Garotta, A. Piasentin, A. Huck
21-27 October 2014
GeoNeurale – Munich

THE COURSE IS CONFIRMED
INTRODUCTION TO PETROLEUM AND GEOTHERMAL EXPLORATION

A detailed overview on the main disciplines involved in the oil & gas and geothermal exploration.
A training on multidisciplinary communication for professionals of the oil and geothermal industry.

R. Garotta, A. Piasentin, A. Huck

21-27 October 2014 (7 days non-stop course)
GeoNeurale – Munich

THE COURSE IS CONFIRMED
Registration Deadline: 30 September 2014

7 DAYS COURSE
INSTRUCTORS: Robert Garotta, Angelo. Piasentin, Arnaud. Huck

A N INTERDISCIPLINARY COURSE FOR EXPLORATION AND PRODUCTION PROFESSIONALS

AUDIENCE: Geologists, Reservoir Engineers, Geophysicists, Petrophysicists, Drilling Engineers

LEVEL: Intermediate

PROPEDEUTICAL:
Online course preparation is offered 2 weeks before course start

COURSE FEES: 3650 Euro + 19% VAT (Non german private companies can be exempted from VAT tax)

ONLINE REGISTRATION: www.GeoNeurale.com
COURSE MOTIVATION

Disciplines in the oil exploration are very specific and detailed. Each specialist is concentrated in its own discipline and tends to go deeper and deeper into the problematic concerning its own field. This is also a tendency of respective research efforts tending to deepen limited aspects of each single science. We read for instance about Petrophysics on topics related to NMR Relaxation, fluid Viscosity determination, Sonic Stoneley waves for Permeability determination, Multiphase Permeability functions etc. On the Geophysical side we read very much about Full Wave inversion, Reverse Time Migration, AVO and AVAZ analysis etc. Reservoir Engineers would be probably concentrated in the Waterflooding and Reservoir Model and Drilling Engineers in the optimal drilling tools and mud Reological Properties for each specific project. The Geologist would for instance concentrate his own efforts in defining the history of the basin where the reservoir is expected to have reached its full development and maturity. This compartmentalization could sometimes bring to substantial illusory assumptions. The Petrophysicist for instance could assume in the preliminary phase that Petrophysical properties could extend indefinitely outside of the well as a layer cake model for hundreds of meters in the horizontal direction and would expect to correlate well logs based for instance on similar Cap Pressure curves in different wells. The Geophysicist could find such correlation unlikely if they don’t satisfy certain criteria within the Quantitative Seismic Interpretation and Seismic Attributes Analysis.

Outside the compartmentalization of each discipline there is a powerful tool that each Geoscientist and Engineer should master. This is the communication tool of understanding confining disciplines and make oneself understood from interlocutors of other disciplines working in the same project. This could really be the decisive issue in deciding about the success or unsuccess of an exploration project.

COURSE PREPARATION

Online Propedeutical course preparation is available at request and comprises the following topics:

- Basic Applications and Algorithms
- Introductory elements of Petrophysics
- Introductory elements of Seismology
gate GeoNeurale Training Center

at the Munich-Garching Research Center
PART 1
PLANNING A GEOTHERMAL EXPLORATION PROJECT AND TECHNOLOGIES OF THE PETROLEUM INDUSTRY

SHORT PROGRAM INDEX

THE STUDIES
THE MACRO-FIELD
REGIONAL STUDIES
GEOPHYSICAL PROSPECTING
SEISMIC EXPLORATION
AQUISITION
ANALYSIS:
 PROCESSING
 INVERSION
 INTERPRETATION
PETROPHYSICS
THE MICRO FIELD
PHYSICS OF THE TOOLS AND MEASUREMENTS
LOG-INTERPRETATION
UPSCALING
RESERVOIR ANALYSIS
INTEGRATED STUDIES
RESERVOIR CHARACTERISATION
STATIC SIMULATION
DYNAMIC SIMULATION
TARGET DEFINITION

OPERATIVE PHASE

THE PLANNING PHASE
DRILLING PROJECT PLANNING
DIRECTIONAL PLANNING
THE DRILLING RIG
DATA LOGGING AND DRILLING DYNAMICS
PHYSICAL UNITS AND CONVERSIONS IN THE OIL INDUSTRY
DIRECTIONAL DRILLING METHODS
MWD/LWD SYSTEMS
WIRELINE LOGS
REALTIME LOGS AND ANALYSIS
REALTIME RESERVOIR CHARACTERIZATION
TESTING AND PRODUCTION METHODS
STIMULATION: FRAC OPERATIONS, COILED TUBING, ACIDIZING, CO2 WELLOTEST
DETAILED PROGRAM
REGIONAL STUDY
The reservoir concept: Oil, Gas, Unconventionals, Geothermy
Geology and Plays
Geophysical studies:
Gravitational, Magnetotelluric, Seismic

3D SEISMIC EXPLORATION
GENERAL CONCEPTS
SEISMIC WAVES
The Wave Equation
MAIN ELASTICITY PARAMETERS
Young, Poisson, Rigidity, Bulk Modulus, Lame constants (Static and Dynamic domains)
P-S WAVES PROPAGATION PARAMETERS

IMPORTANT LAWS FOR WAVE PROPAGATION:
Snell, Huygens, Zoeppritz

WAVE PROPAGATION MODELS

GEOMETRY OF SEISMIC WAVES PATH – RAY PROPAGATION
GEOMETRY / PHENOMENA
NMO, DMO, Offset, Velocity, Raypath, Reflection, Refraction, Transmission, Conversion, Polarization, S-Waves Splitting
Diffraction, Multiples, Sideswipes, Dispersion, Anisotropy

VERTICAL AND HORIZONTAL RESOLUTION
Tuning Thickness, Fresnel Zone

SOURCE MODELS
The Dirac Impulse, Zero and Minimum Phase Wavelet, Sweep, Sweep Design (Bandwidth, Frequency, Taper)
THE UPCOMING SEISMIC EVENTS
Event Signatures, Basic Wavelets, Integral, First and Second Derivatives, Polarity

SOURCES
Vibroseis, Explosives, Waterguns

RECORDERS
Geophones, Geophones Arrays, Marine Streamers

3D SEISMIC PLANNING
3D Seismic Layout Parameters:
Main Concepts: (Inline, Crossline, CMP, Bin, Fold, Taper, Patch, Scattering angle, Template, Xmax, Xmin, Migr-Apron, S/N Ratio)

ELEMENTARY SEISMIC DATA PROCESSING ISSUES
Geometry, Amplitude recovery, Deconvolution, Statics, Noise attenuation, Velocities, Stacking, Migration, Inversion

PROCESSING SEQUENCE (a turnkey price example)
Demultiplex and edit field data
Gain recovery
Resampling and passband filters
Instrument and geophone dephasing
Geometry and refraction statics analysis
Deconvolution and filter tests
Spherical divergence and amplitude corrections
Trace editing
Surface-consistent deconvolution and scaling
Brute stack
Velocity analysis
Automatic surface consistent statics
Intermediate stacks
Final velocity analysis
3-D trim stack with final statics
FX-decon
3-D migration after stack, one-pass

Further unit price options and SEGY format deliverables
GENERAL CONCEPTS IN THE PROCESSING WORKFLOW

- ELEMENTS OF DIGITAL ANALYSIS OF ANALOG SEISMIC SIGNALS
 The Raw Signal, Ricker Wavelet and Spectrum, Zero Phase and Minimum Phase, Fourier transform, Frequency and Phase Spectra, the Sampling Theorem, Aliasing, Nyquist Frequency, the Convolution Theorem, Comb, Sinc, Boxcar, Hilbert transform, Z Transform, Laplace Transform and Transfer Functions, Convolution/Deconvolution, Filters, S/N Ratio, Autocorrelation, Crosscorrelation, Coherence, Semblance, Function Shift/Spectral Changes, Spectral Shift/Function Changes

THE ANISOTROPY PROBLEM
 Micro and Macro-Anisotropy, Anisotropy Systems, the Stiffness Tensor, Parametrization of Anisotropy, Polarization. qP and qS Waves. Weak Anisotropy. The Thompisen Parameters. VTI and HTI media. AVAZ.

THE VELOCITY MODEL
 V-Analysis, Vrms, Vinterval, Vstack, Dix Equations, Dispersion and Frequency dependency

IMAGING
 Pre and Post-Stack Migration
 NMO, DMO, Zero Offset, Ray Tracing, Diffraction Modeling, Fourier, Exploding Reflectors, Huygens, Wave equation, Eikonal equation, Kirchhoff Migration, Tomography, Beam Migration, RTM, WEM

INVERSION
 Pre and Post-Stack Inversion.

INTERPRETATION
 Amplitude, Signature, Seismic Stratigraphy, Noise, Multiples, Side-Swipes, Diffraction, Seismics Attributes Analysis, Amplitude Interpretation, modern Workstations Interpretation programs Workflows
AVO INTERPRETATION AND ROCK PHYSICS
The Effektive-Volumes: Gassmann, Hertz-Mindlin, Voigt, Reuss, Hill, Hashin-Strickman, CCT, SCA, DEM Models,
Sonic-Sampling In - Field
Seismic-Sampling In - Field
Velocity Models and Anisotropy
Linearized Models of the Zoeppritz Equation, Shuey Equation, Angle-Stacks, Cube-Stacks,
NI and Poisson Reflectivity
Reservoir-Impedance , AVO Classes 1,2,3 , Seismic Signatures, AVO Attributes Analysis

SEISMIC ATTRIBUTES ANALYSIS
Interpretive Processing for Seismic Attributes, Amplitude, Time and Complex Attributes, Spectral Decomposition. Multiattributes Interpretation

CLASTIC AND CARBONATE PETROPHYSICS
The Archie’s Equation and Archies Parameters: (a,m,n,F), Porosity Partitioning, Vsh and Sw Determination, Saraband Model, Dual Water Model, Sw Equations for Shaley-Sands Analysis, Lucia Classification, Porosity /Secondary Porosity classification and m-Dependency, Saturation Zones, Capillary Pressure Curve, Winland / Fock and Munn theories,
The General Parallel Conductor Model, the Dual-Porosity Model , Special Core Analysis

STATIC SIMULATION
Concepts of Space-Statistics, Heterogeneity , Anisotropy, Variographic Functions and Structure (Lag, Nugget, Range, Sill), Variogram Models, Covariant and Fractal Models, REV (Representative Effective Volume) and Measurements Resolution.

SEISMIC AND PETROPHYSICAL RESERVOIR CHARACTERIZATION,
STATIC SIMULATION IMPLEMENTING MODELS
3D Seismic Visualization, 3D Modeling, the Seismic Impedance, Coherence, Steering Cube, Inline/Crossline Sections, the Attributes Cube, Structural Models, Fault Modeling, Pillar Gridding, Zonation and Layering, Facies Modeling, Petrophysical Modeling, Upscaling, Variogram Modeling, Kriging Algorithms, Sequential Gaussian Simulation, Multiple Realizations Models, Neural Networks Estimation Models Electrofacies concepts, Volume Calculation, Target Definition, Well Design

TARGETS
Oil and Gas Targets, Hot Dry Rock , Hydrogeothermal , High Entalpy Targets
PART 2
Seismic
from Principles to Multicomponent and Joint Seismic Inversion
By Robert J. Garotta
Section 1 Historical overview, 3D-1C Seismic methods

Section 2 Why use shear waves
• When compressional mode fails
• When lithological information is required
• When fluid contend is important
• When confirmation is needed
• When shallow to medium depth resolution is required

Section 3 Theoretical basis
• Elastic wave propagation in homogeneous media
• Reflection, transmission and conversion of elastic waves
• Boundary and surface waves
• Wave attenuation
• Modelling

Section 4 Multi-component seismic acquisition
• Shear wave sources
• Land multi-component receivers
• Shear wave land acquisition
• PS mode land acquisition specifics
• PS mode marine and shallow water acquisition

Section 5 Processing of multi-component data
• Generalities about Shear mode processing in VTI environment
• Static corrections
• Normal moveout corrections
• Correlation of P and S data
• Generalities about PSv mode processing in VTI environment
• Processing sequence of PSv mode in VTI environment
• Particulars of marine processing
• S and PSV mode processing in an orthorhombic environment
• Inversion and azimuthal analysis

Section 6 Results of multi-component surveys
Conclusions
PART 3
DRILLING TECHNOLOGY
Main components of a Drilling Rig
Drilling tools
The Drilling Process
Drilling Monitoring Systems and Sensors

DATA LOGGING PARAMETERS
ROP, RPM, TORQUE, WOB, HKLD, SPM, T,
TOTGAS, Gas-Chromatography C1-nC5.
Lithology Cutting and Core Analysis, Masterlog
Chemical Analysis

DRILLING OPTIMIZATION PROGRAMS
Data Processing and Programs
HYDRO, PORE-PRESSURE, DRILL-OPTIMIZATION,
MECHANICAL EFFICIENCY PROGRAMS

DRILLING METHODS
Rotary Drilling and Sliding
Modern Drilling Methods

COMPLETIONS
Casing
Completions
Formation Damage and Stimulation
Typical Drilling Problems

SURFACE FACILITIES
Onshore Facilities
Offshore Facilities
D&I MEASUREMENTS and DIRECTIONAL DRILLING
-Gravity and Magnetic field
-Non-magnetic-collar calculations
-Survey,
-sensors (accelerometer, magnetometer, gyroscope)
-MWD gravity und magnetic - T/F
-DirectionalParameters
-Critical Parameters (direction, dog leg severity)
-Survey Parameters (md, tvd, svy station, inclination, azimuth, up svy station, latitude, departure, course length, course deviation, closure, closure direction, vertical section, target)
-Corrections: magnetic declination / meridian divergence (grid north, true north)
-Directional Planning: calculation models (tangential-method, minimum curvature method)
-target-tolerance

TRANSIENT WELL TESTING
DST, RFT
Short overview of modern Well Testing and Curves Interpretation
PRODUCTION EVALUATION TECHNIQUES
Decline Curve Analysis
Material Balance
Production Performance Ratios and Drive Mechanisms
Tracer Tests

RECOVERY AND RESERVES
Recovery
Reserve Definitions
HYDRAULIC FRACTURING OPERATIONS
- In-situ stressfield (closure)
- Stress Origin and Magnitude
- Pore Pressure effect
- Elasticity and stress-parameters
- Faulting theory
- Fracture-Azimuth
- Fracture-Geometry
- Hydro-Frac Operations Planning
- Main Variables and Units
- Units Conversions
- Perkins&Kern Model
- Nolte Analysis
- Efficiency
- Tests
PART 4
INTERPRETATION WITH PROFESSIONAL SOFTWARE

SEISMIC INTERPRETATION
Data Loading: SEGY, Creation of a Steering Cube, Horizon Cube etc. Well-Tie, Visualization of Horizons Slices, Inline, Xline, Transverse, Horizontal Sections, Autotracking, Antracking, Attributes Analysis, Volume Rendering, Spectral Decomposition, Properties Crossplotting, Velocity Analysis, Sequence Stratigraphy

LOG INTERPRETATION
Single Well and Multi-Well Interpretation

STATIC MODELING SOFTWARE (only theoretical introduction)
Fault Modeling, Pillar Gridding, Zonation and Layering, Facies Modeling, Petrophysical Modeling, Upscaling, Well Design

DYNAMIC SIMULATION SOFTWARE (only theoretical introduction)
Overview of the Modeling Process, Conceptual Reservoir Scales, Reservoir Structure, Fluid and Rock-Fluid Interaction, Reservoir Simulation, Reservoir Architecture

Course Books:
- R. Garotta – Multicomponent Seismic (Course Notes)
- GeoNeurale
- Introduction to Geothermal and Petroleum Exploration - Course Notes
- J.R. Fanchi – Applied Reservoir Simulation
 Gulf Professional Publishing, 2001)

-- A complete reference list of scientific literature papers and books will be set available on the online preparation phase
Instructor’s Biography

Robert Garotta, graduated of the Faculté des Sciences in Paris (DES), began his career at the geophysical department of the French National Centre of Scientific Research (CNRS). He joined CGG as a field geophysicist, first in the gravity method then as a seismologist. He was involved in various fields of research and development such as vibroseismic, velocity analysis, static corrections, 3D survey design, shear wave experimentation and processing. He concluded his career at CGG as Senior Vice President of the CGG Geophysical Methods Department. Robert is still advising the CGGVeritas group in the area of Multi-Component seismic.

Awards:
- Conrad Schlumberger Award from EAGE
- Prix Charles Bihoreau
- SEG Distinguished Instructor
- SEG Honorary Member

Angelo Piasentin, leads since 2007 the scientific course administration at GeoNeurale - Munich. He graduated in Geosciences with Internato in Geophysics at the University of Padua. He worked with all major oil service companies as a Data Logging Engineer, MWD-LWD Engineer in oil exploration operations in 4 continents in projects for Agip, BEB, BP, Chevron, Ciepsa, Coastal Oil and Gas, Deutsche Texaco, Elf, Enterprise Oil, Ina, Maersk Oil, MND, Mobil, NAM, Norsk Hydro, Pennzoil, Repsol, Shell, Sonatrach, Statoil, Texaco, Vermilion, Wintershall. He progressed in the Geothermal and Oil Exploration working as a Petrophysicist and Senior Geoscientist. He participated to the course development of Neural Networks Applications for the Petrophysical and Seismic Analysis and Integrated Geostatistical and Petrophysical Applications. Authored papers, publications and patents for new Geothermal Exploration systems and new methods for integrated Petrophysical Analysis in the Pre-Stack Seismic Inversion.

Arnaud Huck is Chief Geophysicist of dGB. Arnaud has over 10 years' experience in the geosciences industry, including seismic reservoir characterization, AVO modelling and well modelling. He is responsible for the management of dGB’s services-based operations and customized studies worldwide and the training of seismic interpreters on dGB’s open source software OpendTect. Arnaud holds a MSc degree with honours in Geophysics from the School of Engineering Geophysics of Strasbourg.
REGISTRATION FORM

Please fill this form and Fax to +49 89 8969 1117 or Email to Courses@GeoNeurale.com

INTRODUCTION TO THE PETROLEUM AND GEOTHERMAL EXPLORATION
Munich, 21-27 October 2014

(7 Days non-stop)

Course Fee: 3650 Euro + VAT 19% (Private companies outside Germany can be exented from VAT TAX. For informations contact: Courses@GeoNeurale.com)

Name:

Company:

Address:

Job Title:

Phone:

Fax:

Email:

SIGNATURE: ________________________________
Registration Details

• Course fee: 3650 Euro + VAT (19%) (No VAT applicable for specific countries, please contact us for further informations)
• Registration deadline: 30 September 2014

Payment and Registration
Tuition fees are due and payable in Euro upon enrollment in the course by bank transfer to the bank account given below unless another payment form is agreed.

Unless otherwise indicated, the payment should be received before the date specified in the invoice as payment term to make the enrollment effective.

To register to the course please fill in the registration form and fax or email it along with the confirmation of your bank transfer to:

GeoNeurale
Am Nymphenbad 8
81245 Munich
T +49 89 8969 1118
F +49 89 8969 1117

ONLINE REGISTRATION: www.GeoNeurale.com

Bank Information: Genossenschaftsbank EG Muenchen
Bank Account N. 519618 BIC – Code: GENODEF 1M07
BLZ 701 694 64 IBAN: DE19 7016 9464 0000 5196 18

Please indicate your name and the purpose:
“INTRODUCTION TO PETROLEUM AND GEOTHERMAL EXPLORATION course fees”.
Provisions

Tuition fees are due and payable in Euro upon enrollment in the course. Unless otherwise indicated, fees do not include student travel costs and living expenses.

Payments are also accepted via personal or company check, traveler's check, credit card, and Company Purchase Orders.

Cancellations by Participant:

All cancellation are subject to a 100 Euro non-refundable cancellation fee.

Cancellation have to be notified to our office, at least 30 days prior to the course start date to receive a refund (less the 100 Euro cancellation fee).

If the participants are unable to cancel prior to the 31 days notification date, they may substitute another person at their place in a course by notifying us prior to the course start date.

Course Cancellations:

GeoNeurale reserves the right to cancel the courses if necessary. The decision to cancel a course is made at least two weeks prior to the course start date. If a course is cancelled, the participant will receive a full reimbursement of the tuition fees (but not of the plane ticket or hotel expenses or any other costs), or will be enrolled in another course upon his decision (the cost of the original course will be applied to the cost of the replacement course).

GeoNeurale can not be responsible for any penalties incurred for cancellation or change of airline or hotel reservations.

Refunds: GeoNeurale will promptly remit all refunds of tuition fees due to cancellations or annullment (less any appropriate non-refundable cancellation fee) within 30 days of the course cancellation.

Force Majeure: GeoNeurale can not be responsible for cancellations due to “force majeure” events: strikes, emergency situations, natural catastrophes and all situations and incidents independent or outside the human control that can delay or cancel the course. In case of such events related cancellations the course tuition fees will be refunded to the client.

Geoneurale is not responsible for any delay or absence caused by the training instructor or training instructor company for reasons which are independent or out of the control of GeoNeurale’s decisions.

Upon registration the course participant assumes full responsibility to keep all course material confidential and not to transfer it to any third party.

AGREEMENT: Upon enrollment all parts accept the above mentioned provisions. The above specified provisions shall regulate the agreement between GeoNeurale and the participant and the participant company and will enter into force upon enrollment.
TRAINING LOCATION – RESEARCH CENTER

GATE GARCHING

MAP MUNICH-GARCHING
http://www.muenchen.city-map.de/city/db/130208000001/14269/Garching.html

MUNICH INFO and MAP MUNICH CENTRAL
http://www.muenchen.de/home/60093/Homepage.html

MAP MUNICH UNDERGROUND
http://www.mvv-muenchen.de/web4archiv/objects/download/3/netz1207englisch.pdf

HOTELS NEAR GeoNeurale

BAVARIA INFO